

Welcome to betterpath’s documentation!

Contents:

	FilePath

	MemoryPath

	ReadOnlyPath

	ZipPath

	Generic Helpers

Indices and tables

	Index

	Module Index

	Search Page

FilePath

	
class bp.filepath.FilePath(path, alwaysCreate=False)

	I am a path on the filesystem that only permits “downwards” access.

Instantiate me with a pathname, e.g.
FilePath(‘/home/myuser/public_html’), and I will attempt to only provide
access to files which reside inside that path. I may be a path to a file,
a directory, or a file which does not exist.

The correct way to use me is to instantiate me, and then do all
filesystem access through me. In other words, do not import the os
module; if you need to open a file, call my open() method. If
you need to list a directory, call my listdir() method.

Even if you pass me a relative path, I will convert that to an absolute
path internally.

Note: although time-related methods do return floating-point results, they
may still be only second resolution depending on the platform and the last
value passed to os.stat_float_times. If you want greater-than-second
precision, call os.stat_float_times(True), or use Python 2.5.
Greater-than-second precision is only available in Windows on Python 2.5
and later.

On both Python 2 and Python 3, paths can only be bytes.

	Variables:	
	alwaysCreate (bool) – When opening this file, only succeed if the file
does not already exist.

	path (bytes) – The path from which “downward” traversal is permitted.

	statinfo (os.stat_result) – The currently cached status information
about the file on the filesystem that this
FilePath points to. This
attribute is C{None} if the file is in an
indeterminate state (either this
FilePath has not yet had cause
to call C{stat()} yet or
L{FilePath.changed} indicated that new
information is required), 0 if C{stat()}
was called and returned an error (i.e. the
path did not exist when C{stat()} was
called), or a C{stat_result} object that
describes the last known status of the
underlying file (or directory, as the case
may be). Trust me when I tell you that you
do not want to use this attribute. Instead,
use the methods on FilePath
which give you information about it, like
C{getsize()}, C{isdir()},
C{getModificationTime()}, and so on.

Warning

Do not use statinfo. Trust me when I tell you that you do
not want to use this attribute.

	
__getstate__()

	Support serialization by discarding cached os.stat() results
and returning everything else.

	
__hash__()

	Hash the same as another FilePath with the same path as
mine.

	
__init__(path, alwaysCreate=False)

	Convert a path string to an absolute path if necessary and initialize
the FilePath with the result.

	
__weakref__

	list of weak references to the object (if defined)

	
basename()

	Retrieve the final component of the file path’s path (everything
after the final path separator).

	Returns:	The final component of the FilePath‘s path (Everything
after the final path separator).

	Return type:	L{bytes}

	
changed()

	Clear any cached information about the state of this path on disk.

	
child(path)

	Create and return a new FilePath representing a path
contained by this path.

	Parameters:	path (bytes) – The base name of the new FilePath. If
it contains directory separators or parent
references, it will be rejected.

	Raises:	InsecurePath – If the result of combining this path with the
given path would result in a path which is not a
direct child of this path.

	Returns:	The child path

	Return type:	FilePath

	
childSearchPreauth(*paths)

	Return my first existing child with a name in C{paths}.

C{paths} is expected to be a list of pre-secured path fragments;
in most cases this will be specified by a system administrator and not
an arbitrary user.

If no appropriately-named children exist, this will return C{None}.

	Returns:	C{None} or the child path.

	Return type:	L{types.NoneType} or FilePath

	
children(path)

	List the children of the given path.

	Returns:	an iterable of all currently-existing children of the path.

	Return type:	iterable

	
chmod(mode)

	Changes the permissions on self, if possible. Propagates errors from
L{os.chmod} up.

	Parameters:	mode (int) – the new permissions desired (same as the command line
chmod)

	
clonePath

	alias of FilePath

	
copyTo(destination, followLinks=True)

	Copies self to destination.

If self doesn’t exist, an OSError is raised.

If self is a directory, this method copies its children (but not
itself) recursively to destination - if destination does not exist as
a directory, this method creates it. If destination is a file, an
IOError will be raised.

If self is a file, this method copies it to destination. If
destination is a file, this method overwrites it. If destination is a
directory, an IOError will be raised.

If self is a link (and followLinks is False), self will be copied over
as a new symlink with the same target as returned by os.readlink.
That means that if it is absolute, both the old and new symlink will
link to the same thing. If it’s relative, then perhaps not (and it’s
also possible that this relative link will be broken).

File/directory permissions and ownership will NOT be copied over.

If followLinks is True, symlinks are followed so that they’re treated
as their targets. In other words, if self is a link, the link’s
target will be copied. If destination is a link, self will be copied
to the destination’s target (the actual destination will be
destination’s target). Symlinks under self (if self is a directory)
will be followed and its target’s children be copied recursively.

If followLinks is False, symlinks will be copied over as symlinks.

	Parameters:	
	destination (FilePath) – the destination (a FilePath) to which
self should be copied

	followLinks (bool) – whether symlinks in self should be treated as
links or as their targets

	
create()

	Exclusively create a file, only if this file previously did not exist.

	Returns:	A file-like object opened from this path.

	
createDirectory()

	Create the directory the FilePath refers to.

@see: L{makedirs}

	Raises:	OSError – If the directory cannot be created.

	
descendant(path, segments)

	Retrieve a child or child’s child of the given path.

	Parameters:	segments (iterable) – A sequence of path segments as L{str} instances.

	Returns:	A L{FilePath} constructed by looking up the C{segments[0]} child
of this path, the C{segments[1]} child of that path, and so on.

	
dirname()

	Retrieve all of the components of the FilePath‘s path except the
last one (everything up to the final path separator).

	Returns:	All of the components of the FilePath‘s path except the
last one (everything up to the final path separator).

	Return type:	L{bytes}

	
exists()

	Check if this FilePath exists.

	Returns:	Whether this path definitely exists.

	Return type:	bool

	
getAccessTime()

	Retrieve the time that this file was last accessed.

	Returns:	a number of seconds from the epoch.

	Return type:	float

	
getContent(path)

	Retrieve the data from a given file path.

	
getDevice()

	Retrieves the device containing the file. The inode number and device
number together uniquely identify the file, but the device number is
not necessarily consistent across reboots or system crashes.

	Raises:	NotImplementedError – if the platform is Windows, since the
device number would be 0 for all
partitions on a Windows platform

	Returns:	a number representing the device

	Return type:	int

	
getGroupID()

	Returns the group ID of the file.

	Raises:	NotImplementedError – if the platform is Windows, since the GID
is always 0 on windows

	Returns:	the group ID of the file

	Return type:	int

	
getInodeNumber()

	Retrieve the file serial number, also called inode number, which
distinguishes this file from all other files on the same device.

	Raises:	NotImplementedError – if the platform is Windows, since the
inode number would be a dummy value for
all files in Windows

	Returns:	a number representing the file serial number

	Return type:	int

	
getModificationTime()

	Retrieve the time of last access from this file.

	Returns:	a number of seconds from the epoch.

	Return type:	float

	
getNumberOfHardLinks()

	Retrieves the number of hard links to the file.

This count keeps track of how many directories have entries for this
file. If the count is ever decremented to zero then the file itself is
discarded as soon as no process still holds it open. Symbolic links
are not counted in the total.

	Raises:	NotImplementedError – if the platform is Windows, since Windows
doesn’t maintain a link count for
directories, and os.stat() does
not set C{st_nlink} on Windows anyway.

	Returns:	the number of hard links to the file

	Return type:	int

	
getPermissions()

	Returns the permissions of the file. Should also work on Windows;
however, those permissions may not be what is expected in Windows.

	Returns:	the permissions for the file

	Return type:	Permissions

	
getStatusChangeTime()

	Retrieve the time of the last status change for this file.

	Returns:	a number of seconds from the epoch.

	Return type:	float

	
getUserID()

	Returns the user ID of the file’s owner.

	Raises:	NotImplementedError – if the platform is Windows, since the UID
is always 0 on Windows

	Returns:	the user ID of the file’s owner

	Return type:	L{int}

	
getsize()

	Retrieve the size of this file in bytes.

	Returns:	The size of the file at this file path in bytes.

	Raises:	Exception – if the size cannot be obtained.

	Return type:	int

	
globChildren(pattern)

	Assuming I am representing a directory, return a list of FilePaths
representing my children that match the given pattern.

@param pattern: A glob pattern to use to match child paths.
@type pattern: L{bytes}

	Returns:	A L{list} of matching children.

	Return type:	L{list}

	
isBlockDevice()

	Returns whether the underlying path is a block device.

	Returns:	C{True} if it is a block device, C{False} otherwise

	Return type:	L{bool}

	
isSocket()

	Returns whether the underlying path is a socket.

	Returns:	C{True} if it is a socket, C{False} otherwise

	Return type:	L{bool}

	
isabs()

	Check if this FilePath refers to an absolute path.

Deprecated since version 0.2: This method always returns True. To replace this method, simply
replace its usage in code with True and then simplify as
needed.

	Returns:	True

	Return type:	bool

	
isdir()

	Check if this FilePath refers to a directory.

	Returns:	Whether this FilePath refers to a directory

	Return type:	bool

	
isfile()

	Check if this file path refers to a regular file.

	Returns:	C{True} if this FilePath points to a regular file
(not a directory, socket, named pipe, etc), C{False}
otherwise.

	Return type:	L{bool}

	
islink()

	Check if this FilePath points to a symbolic link.

	Returns:	C{True} if this FilePath points to a symbolic
link, C{False} otherwise.

	Return type:	L{bool}

	
linkTo(linkFilePath)

	Creates a symlink to self to at the path in the FilePath
C{linkFilePath}.

Only works on posix systems due to its dependence on
L{os.symlink}. Propagates L{OSError}s up from L{os.symlink} if
C{linkFilePath.parent()} does not exist, or C{linkFilePath} already
exists.

	Parameters:	linkFilePath (FilePath) – the link to be created.

	
listdir()

	List the base names of the direct children of this FilePath.

	Returns:	A L{list} of L{bytes} giving the names of the contents of the
directory this FilePath refers to. These names
are relative to this FilePath.

	Return type:	L{list}

	Raises:	
	OSError – If an error occurs while listing the directory. If
the error is ‘serious’, meaning that the operation
failed due to an access violation, exhaustion of some
kind of resource (file descriptors or memory), OSError
or a platform-specific variant will be raised.

	UnlistableError – If the inability to list the directory is due
to this path not existing or not being a
directory, the more specific OSError subclass
L{UnlistableError} is raised instead.

	Raise:	Anything the platform L{os.listdir} implementation might raise
(typically L{OSError}).

	
makedirs()

	Create all directories not yet existing in C{path} segments, using
L{os.makedirs}.

	Returns:	C{None}

	
moveTo(destination, followLinks=True)

	Move self to destination - basically renaming self to whatever
destination is named.

If destination is an already-existing directory,
moves all children to destination if destination is empty. If
destination is a non-empty directory, or destination is a file, an
OSError will be raised.

If moving between filesystems, self needs to be copied, and everything
that applies to copyTo applies to moveTo.

	@param destination: the destination (a FilePath) to which self

	should be copied

	@param followLinks: whether symlinks in self should be treated as links

	or as their targets (only applicable when moving between
filesystems)

	
open(mode='r')

	Open this file using C{mode} or for writing if C{alwaysCreate} is
C{True}.

In all cases the file is opened in binary mode, so it is not necessary
to include C{“b”} in C{mode}.

	Parameters:	mode (str) – The mode to open the file in. Default is C{“r”}.

	Raises:	AssertionError – If C{“a”} is included in the mode and
C{alwaysCreate} is C{True}.

	Return type:	L{file}

	Returns:	An open L{file} object.

	
parent()

	A file path for the directory containing the file at this file path.

	Returns:	A FilePath representing the path which directly contains
this FilePath.

	Return type:	FilePath

	
parents(path)

	Retrieve an iterator of all the ancestors of the given path.

	Returns:	An iterator of all the ancestors of the given path, from the most
recent (its immediate parent) to the root of its filesystem.

	Return type:	iterator

	
preauthChild(path)

	Use me if C{path} might have slashes in it, but you know they’re safe.

	Parameters:	path (bytes) – A relative path (ie, a path not starting with
C{“/”}) which will be interpreted as a child or
descendant of this path.

	Returns:	The child path.

	Return type:	FilePath

	
realpath()

	Returns the absolute target as a FilePath if self is a
link, self otherwise.

The absolute link is the ultimate file or directory the
link refers to (for instance, if the link refers to another link, and
another...). If the filesystem does not support symlinks, or
if the link is cyclical, raises a LinkError.

	Returns:	FilePath of the target path.

	Return type:	FilePath

	Raises:	LinkError – if links are not supported or links are cyclical.

	
remove()

	Removes the file or directory that is represented by self. If
C{self.path} is a directory, recursively remove all its children
before removing the directory. If it’s a file or link, just delete it.

	
requireCreate(val=True)

	Sets the C{alwaysCreate} variable.

	Parameters:	val (bool) – C{True} or C{False}, indicating whether opening this
path will be required to create the file or not.

	
restat(reraise=True)

	Re-calculate cached effects of ‘stat’. To refresh information on this
path after you know the filesystem may have changed, call this method.

	Parameters:	reraise (bool) – If true, re-raise exceptions from
os.stat(); otherwise, mark this path as
not existing, and remove any cached stat
information.

	Raises:	Exception – If C{reraise} is C{True} and an exception occurs
while reloading metadata.

Note

Please do not use this method.

Deprecated since version 0.2.

	
segmentsFrom(path, ancestor)

	Return a list of segments between a child and its ancestor.

For example, in the case of a path X representing /a/b/c/d and a path Y
representing /a/b, C{Y.segmentsFrom(X)} will return C{[‘c’, ‘d’]}.

	Parameters:	ancestor – an instance of the same class as self, ostensibly an
ancestor of self.

	Raises:	ValueError – When the ‘ancestor’ parameter is not actually an
ancestor, i.e. a path for /x/y/z is passed as an
ancestor for /a/b/c/d.

	Returns:	a list of segments

	Return type:	list

	
setContent(content, ext='.new')

	Replace the file at this path with a new file that contains the given
bytes, trying to avoid data-loss in the meanwhile.

On UNIX-like platforms, this method does its best to ensure that by
the time this method returns, either the old contents or the new
contents of the file will be present at this path for subsequent
readers regardless of premature device removal, program crash, or
power loss, making the following assumptions:

	your filesystem is journaled (i.e. your filesystem will not
I{itself} lose data due to power loss)

	your filesystem’s C{rename()} is atomic

	your filesystem will not discard new data while preserving new
metadata (see U{http://mjg59.livejournal.com/108257.html} for
more detail)

On most versions of Windows there is no atomic C{rename()} (see
U{http://bit.ly/win32-overwrite} for more information), so this method
is slightly less helpful. There is a small window where the file at
this path may be deleted before the new file is moved to replace it:
however, the new file will be fully written and flushed beforehand so
in the unlikely event that there is a crash at that point, it should
be possible for the user to manually recover the new version of their
data. In the future, Twisted will support atomic file moves on those
versions of Windows which do support them: see U{Twisted ticket
3004<http://twistedmatrix.com/trac/ticket/3004>}.

This method should be safe for use by multiple concurrent processes,
but note that it is not easy to predict which process’s contents will
ultimately end up on disk if they invoke this method at close to the
same time.

	Parameters:	
	content (bytes) – The desired contents of the file at this path.

	ext (bytes) – An extension to append to the temporary filename
used to store the bytes while they are being
written. This can be used to make sure that
temporary files can be identified by their suffix,
for cleanup in case of crashes.

	
sibling(path, segment)

	Return an L{IFilePath} with the same directory as the given path, but with
a basename of C{segment}.

	Parameters:	segment (str) – The basename of the L{IFilePath} to return.

	Returns:	The sibling path.

	Return type:	L{IFilePath}

	
siblingExtension(ext)

	Attempt to return a path with my name, given the extension at C{ext}.

	Parameters:	ext (str) – File-extension to search for.

	Returns:	The sibling path.

	Return type:	FilePath

	
siblingExtensionSearch(*exts)

	Attempt to return a path with my name, given multiple possible
extensions.

Each extension in C{exts} will be tested and the first path which
exists will be returned. If no path exists, C{None} will be returned.
If C{‘’} is in C{exts}, then if the file referred to by this path
exists, C{self} will be returned.

The extension ‘*’ has a magic meaning, which means “any path that
begins with C{self.path + ‘.’} is acceptable”.

	
splitext()

	Split the file path into a pair C{(root, ext)} such that
C{root + ext == path}.

	Returns:	Tuple where the first item is the filename and second item is
the file extension. See Python docs for L{os.path.splitext}.

	Return type:	L{tuple}

	
temporarySibling(extension='')

	Construct a path referring to a sibling of this path.

The resulting path will be unpredictable, so that other subprocesses
should neither accidentally attempt to refer to the same path before
it is created, nor they should other processes be able to guess its
name in advance.

	Parameters:	extension (bytes) – A suffix to append to the created filename.
(Note that if you want an extension with a ‘.’
you must include the ‘.’ yourself.)

	Returns:	A FilePath with the given extension suffix and with
C{alwaysCreate} set to True.

	Return type:	FilePath

	
touch()

	Updates the access and last modification times of the file at this
file path to the current time. Also creates the file if it does not
already exist.

	@raise Exception: if unable to create or modify the last modification

	time of the file.

	
walk(path, descend=None)

	Yield a path, then each of its children, and each of those children’s
children in turn.

	Parameters:	descend (callable) – A one-argument callable that will return True for
FilePaths that should be traversed and False
otherwise. It will be called with each path for
which isdir() returns True. If omitted,
all directories will be traversed, including
symbolic links.

	Raises:	LinkError – A cycle of symbolic links was found

	Returns:	a generator yielding FilePath-like objects

	Return type:	generator

MemoryPath

	
class bp.memory.MemoryPath(fs, path=())

	An IFilePath which shows a view into a MemoryFS.

	
children(path)

	List the children of the given path.

	Returns:	an iterable of all currently-existing children of the path.

	Return type:	iterable

	
listdir()

	Pretend that we are a directory and get a listing of child names.

	
parents(path)

	Retrieve an iterator of all the ancestors of the given path.

	Returns:	An iterator of all the ancestors of the given path, from the most
recent (its immediate parent) to the root of its filesystem.

	Return type:	iterator

	
segmentsFrom(path, ancestor)

	Return a list of segments between a child and its ancestor.

For example, in the case of a path X representing /a/b/c/d and a path Y
representing /a/b, C{Y.segmentsFrom(X)} will return C{[‘c’, ‘d’]}.

	Parameters:	ancestor – an instance of the same class as self, ostensibly an
ancestor of self.

	Raises:	ValueError – When the ‘ancestor’ parameter is not actually an
ancestor, i.e. a path for /x/y/z is passed as an
ancestor for /a/b/c/d.

	Returns:	a list of segments

	Return type:	list

	
sibling(path, segment)

	Return an L{IFilePath} with the same directory as the given path, but with
a basename of C{segment}.

	Parameters:	segment (str) – The basename of the L{IFilePath} to return.

	Returns:	The sibling path.

	Return type:	L{IFilePath}

	
walk(path, descend=None)

	Yield a path, then each of its children, and each of those children’s
children in turn.

	Parameters:	descend (callable) – A one-argument callable that will return True for
FilePaths that should be traversed and False
otherwise. It will be called with each path for
which isdir() returns True. If omitted,
all directories will be traversed, including
symbolic links.

	Raises:	LinkError – A cycle of symbolic links was found

	Returns:	a generator yielding FilePath-like objects

	Return type:	generator

ReadOnlyPath

	
class bp.readonly.ReadOnlyPath(fp)

	An IFilePath which is intrinsically read-only in every aspect.

	
children(path)

	List the children of the given path.

	Returns:	an iterable of all currently-existing children of the path.

	Return type:	iterable

	
descendant(path, segments)

	Retrieve a child or child’s child of the given path.

	Parameters:	segments (iterable) – A sequence of path segments as L{str} instances.

	Returns:	A L{FilePath} constructed by looking up the C{segments[0]} child
of this path, the C{segments[1]} child of that path, and so on.

	
parents(path)

	Retrieve an iterator of all the ancestors of the given path.

	Returns:	An iterator of all the ancestors of the given path, from the most
recent (its immediate parent) to the root of its filesystem.

	Return type:	iterator

	
segmentsFrom(path, ancestor)

	Return a list of segments between a child and its ancestor.

For example, in the case of a path X representing /a/b/c/d and a path Y
representing /a/b, C{Y.segmentsFrom(X)} will return C{[‘c’, ‘d’]}.

	Parameters:	ancestor – an instance of the same class as self, ostensibly an
ancestor of self.

	Raises:	ValueError – When the ‘ancestor’ parameter is not actually an
ancestor, i.e. a path for /x/y/z is passed as an
ancestor for /a/b/c/d.

	Returns:	a list of segments

	Return type:	list

	
sibling(path, segment)

	Return an L{IFilePath} with the same directory as the given path, but with
a basename of C{segment}.

	Parameters:	segment (str) – The basename of the L{IFilePath} to return.

	Returns:	The sibling path.

	Return type:	L{IFilePath}

	
walk(path, descend=None)

	Yield a path, then each of its children, and each of those children’s
children in turn.

	Parameters:	descend (callable) – A one-argument callable that will return True for
FilePaths that should be traversed and False
otherwise. It will be called with each path for
which isdir() returns True. If omitted,
all directories will be traversed, including
symbolic links.

	Raises:	LinkError – A cycle of symbolic links was found

	Returns:	a generator yielding FilePath-like objects

	Return type:	generator

ZipPath

	
class bp.zippath.ZipPath(archive, pathInArchive)

	I am a file or directory contained within a zip file.

	
__init__(archive, pathInArchive)

	Don’t construct me directly. Use ZipArchive.child().

	Parameters:	
	archive (ZipArchive) – a ZipArchive instance.

	pathInArchive (str) – a ZIP_PATH_SEP-separated string.

	
__weakref__

	list of weak references to the object (if defined)

	
child(path)

	Return a new ZipPath representing a path in C{self.archive} which is
a child of this path.

Note

Requesting the C{”..”} (or other special name) child will
not cause L{InsecurePath} to be raised since these names
do not have any special meaning inside a zip archive. Be
particularly careful with the C{path} attribute (if you
absolutely must use it) as this means it may include special
names with special meaning outside of the context of a zip
archive.

	
children(path)

	List the children of the given path.

	Returns:	an iterable of all currently-existing children of the path.

	Return type:	iterable

	
descendant(path, segments)

	Retrieve a child or child’s child of the given path.

	Parameters:	segments (iterable) – A sequence of path segments as L{str} instances.

	Returns:	A L{FilePath} constructed by looking up the C{segments[0]} child
of this path, the C{segments[1]} child of that path, and so on.

	
getAccessTime()

	Retrieve this file’s last access-time.

This is the same as the last access time for the archive.

	Returns:	a number of seconds since the epoch

	Return type:	int

	
getModificationTime()

	Retrieve this file’s last modification time.

This is the time of modification recorded in the zipfile.

	Returns:	a number of seconds since the epoch.

	Return type:	int

	
getStatusChangeTime()

	Retrieve this file’s last modification time.

This is the time of modification recorded in the zipfile.

	Returns:	a number of seconds since the epoch.

	Return type:	int

	
getsize()

	Retrieve this file’s size.

@return: file size, in bytes

	
parents(path)

	Retrieve an iterator of all the ancestors of the given path.

	Returns:	An iterator of all the ancestors of the given path, from the most
recent (its immediate parent) to the root of its filesystem.

	Return type:	iterator

	
segmentsFrom(path, ancestor)

	Return a list of segments between a child and its ancestor.

For example, in the case of a path X representing /a/b/c/d and a path Y
representing /a/b, C{Y.segmentsFrom(X)} will return C{[‘c’, ‘d’]}.

	Parameters:	ancestor – an instance of the same class as self, ostensibly an
ancestor of self.

	Raises:	ValueError – When the ‘ancestor’ parameter is not actually an
ancestor, i.e. a path for /x/y/z is passed as an
ancestor for /a/b/c/d.

	Returns:	a list of segments

	Return type:	list

	
splitext()

	Return a value similar to that returned by
os.path.splitext().

	
walk(path, descend=None)

	Yield a path, then each of its children, and each of those children’s
children in turn.

	Parameters:	descend (callable) – A one-argument callable that will return True for
FilePaths that should be traversed and False
otherwise. It will be called with each path for
which isdir() returns True. If omitted,
all directories will be traversed, including
symbolic links.

	Raises:	LinkError – A cycle of symbolic links was found

	Returns:	a generator yielding FilePath-like objects

	Return type:	generator

Generic Helpers

	
bp.generic.genericChildren(path)

	List the children of the given path.

	Returns:	an iterable of all currently-existing children of the path.

	Return type:	iterable

	
bp.generic.genericDescendant(path, segments)

	Retrieve a child or child’s child of the given path.

	Parameters:	segments (iterable) – A sequence of path segments as L{str} instances.

	Returns:	A L{FilePath} constructed by looking up the C{segments[0]} child
of this path, the C{segments[1]} child of that path, and so on.

	
bp.generic.genericGetContent(path)

	Retrieve the data from a given file path.

	
bp.generic.genericParents(path)

	Retrieve an iterator of all the ancestors of the given path.

	Returns:	An iterator of all the ancestors of the given path, from the most
recent (its immediate parent) to the root of its filesystem.

	Return type:	iterator

	
bp.generic.genericSegmentsFrom(path, ancestor)

	Return a list of segments between a child and its ancestor.

For example, in the case of a path X representing /a/b/c/d and a path Y
representing /a/b, C{Y.segmentsFrom(X)} will return C{[‘c’, ‘d’]}.

	Parameters:	ancestor – an instance of the same class as self, ostensibly an
ancestor of self.

	Raises:	ValueError – When the ‘ancestor’ parameter is not actually an
ancestor, i.e. a path for /x/y/z is passed as an
ancestor for /a/b/c/d.

	Returns:	a list of segments

	Return type:	list

	
bp.generic.genericSibling(path, segment)

	Return an L{IFilePath} with the same directory as the given path, but with
a basename of C{segment}.

	Parameters:	segment (str) – The basename of the L{IFilePath} to return.

	Returns:	The sibling path.

	Return type:	L{IFilePath}

	
bp.generic.genericWalk(path, descend=None)

	Yield a path, then each of its children, and each of those children’s
children in turn.

	Parameters:	descend (callable) – A one-argument callable that will return True for
FilePaths that should be traversed and False
otherwise. It will be called with each path for
which isdir() returns True. If omitted,
all directories will be traversed, including
symbolic links.

	Raises:	LinkError – A cycle of symbolic links was found

	Returns:	a generator yielding FilePath-like objects

	Return type:	generator

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bp	

 	
 	
 bp.generic	

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | W
 | Z

_

 	
 	__getstate__() (bp.filepath.FilePath method)

 	__hash__() (bp.filepath.FilePath method)

 	__init__() (bp.filepath.FilePath method)

 	(bp.zippath.ZipPath method)

 	
 	__weakref__ (bp.filepath.FilePath attribute)

 	(bp.zippath.ZipPath attribute)

B

 	
 	basename() (bp.filepath.FilePath method)

 	
 	bp.generic (module)

C

 	
 	changed() (bp.filepath.FilePath method)

 	child() (bp.filepath.FilePath method)

 	(bp.zippath.ZipPath method)

 	children() (bp.filepath.FilePath method)

 	(bp.memory.MemoryPath method)

 	(bp.readonly.ReadOnlyPath method)

 	(bp.zippath.ZipPath method)

 	
 	childSearchPreauth() (bp.filepath.FilePath method)

 	chmod() (bp.filepath.FilePath method)

 	clonePath (bp.filepath.FilePath attribute)

 	copyTo() (bp.filepath.FilePath method)

 	create() (bp.filepath.FilePath method)

 	createDirectory() (bp.filepath.FilePath method)

D

 	
 	descendant() (bp.filepath.FilePath method)

 	(bp.readonly.ReadOnlyPath method)

 	(bp.zippath.ZipPath method)

 	
 	dirname() (bp.filepath.FilePath method)

E

 	
 	exists() (bp.filepath.FilePath method)

F

 	
 	FilePath (class in bp.filepath)

G

 	
 	genericChildren() (in module bp.generic)

 	genericDescendant() (in module bp.generic)

 	genericGetContent() (in module bp.generic)

 	genericParents() (in module bp.generic)

 	genericSegmentsFrom() (in module bp.generic)

 	genericSibling() (in module bp.generic)

 	genericWalk() (in module bp.generic)

 	getAccessTime() (bp.filepath.FilePath method)

 	(bp.zippath.ZipPath method)

 	getContent() (bp.filepath.FilePath method)

 	getDevice() (bp.filepath.FilePath method)

 	
 	getGroupID() (bp.filepath.FilePath method)

 	getInodeNumber() (bp.filepath.FilePath method)

 	getModificationTime() (bp.filepath.FilePath method)

 	(bp.zippath.ZipPath method)

 	getNumberOfHardLinks() (bp.filepath.FilePath method)

 	getPermissions() (bp.filepath.FilePath method)

 	getsize() (bp.filepath.FilePath method)

 	(bp.zippath.ZipPath method)

 	getStatusChangeTime() (bp.filepath.FilePath method)

 	(bp.zippath.ZipPath method)

 	getUserID() (bp.filepath.FilePath method)

 	globChildren() (bp.filepath.FilePath method)

I

 	
 	isabs() (bp.filepath.FilePath method)

 	isBlockDevice() (bp.filepath.FilePath method)

 	isdir() (bp.filepath.FilePath method)

 	
 	isfile() (bp.filepath.FilePath method)

 	islink() (bp.filepath.FilePath method)

 	isSocket() (bp.filepath.FilePath method)

L

 	
 	linkTo() (bp.filepath.FilePath method)

 	
 	listdir() (bp.filepath.FilePath method)

 	(bp.memory.MemoryPath method)

M

 	
 	makedirs() (bp.filepath.FilePath method)

 	
 	MemoryPath (class in bp.memory)

 	moveTo() (bp.filepath.FilePath method)

O

 	
 	open() (bp.filepath.FilePath method)

P

 	
 	parent() (bp.filepath.FilePath method)

 	parents() (bp.filepath.FilePath method)

 	(bp.memory.MemoryPath method)

 	(bp.readonly.ReadOnlyPath method)

 	(bp.zippath.ZipPath method)

 	
 	preauthChild() (bp.filepath.FilePath method)

R

 	
 	ReadOnlyPath (class in bp.readonly)

 	realpath() (bp.filepath.FilePath method)

 	
 	remove() (bp.filepath.FilePath method)

 	requireCreate() (bp.filepath.FilePath method)

 	restat() (bp.filepath.FilePath method)

S

 	
 	segmentsFrom() (bp.filepath.FilePath method)

 	(bp.memory.MemoryPath method)

 	(bp.readonly.ReadOnlyPath method)

 	(bp.zippath.ZipPath method)

 	setContent() (bp.filepath.FilePath method)

 	sibling() (bp.filepath.FilePath method)

 	(bp.memory.MemoryPath method)

 	(bp.readonly.ReadOnlyPath method)

 	
 	siblingExtension() (bp.filepath.FilePath method)

 	siblingExtensionSearch() (bp.filepath.FilePath method)

 	splitext() (bp.filepath.FilePath method)

 	(bp.zippath.ZipPath method)

T

 	
 	temporarySibling() (bp.filepath.FilePath method)

 	
 	touch() (bp.filepath.FilePath method)

W

 	
 	walk() (bp.filepath.FilePath method)

 	(bp.memory.MemoryPath method)

 	(bp.readonly.ReadOnlyPath method)

 	(bp.zippath.ZipPath method)

Z

 	
 	ZipPath (class in bp.zippath)

 _static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to betterpath's documentation!

 		FilePath

 		MemoryPath

 		ReadOnlyPath

 		ZipPath

 		Generic Helpers

_static/file.png

_static/down-pressed.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment.png

_static/comment-bright.png

_static/down.png

